Direct oriented growth of armchair graphene nanoribbons on germanium
نویسندگان
چکیده
Graphene can be transformed from a semimetal into a semiconductor if it is confined into nanoribbons narrower than 10 nm with controlled crystallographic orientation and well-defined armchair edges. However, the scalable synthesis of nanoribbons with this precision directly on insulating or semiconducting substrates has not been possible. Here we demonstrate the synthesis of graphene nanoribbons on Ge(001) via chemical vapour deposition. The nanoribbons are self-aligning 3° from the Ge〈110〉 directions, are self-defining with predominantly smooth armchair edges, and have tunable width to <10 nm and aspect ratio to >70. In order to realize highly anisotropic ribbons, it is critical to operate in a regime in which the growth rate in the width direction is especially slow, <5 nm h(-1). This directional and anisotropic growth enables nanoribbon fabrication directly on conventional semiconductor wafer platforms and, therefore, promises to allow the integration of nanoribbons into future hybrid integrated circuits.
منابع مشابه
Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملElectronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field
Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...
متن کاملSymmetries and the conductance of graphene nanoribbons with long-range disorder
We study the conductance of graphene nanoribbons with long-range disorder. Due to the absence of intervalley scattering from the disorder potential, time-reversal symmetry (TRS) can be effectively broken even without a magnetic field, depending on the type of ribbon edge. Even though armchair edges generally mix valleys, we show that metallic armchair nanoribbons possess a hidden pseudovalley s...
متن کاملCombined effect of strain and defects on the conductance of graphene nanoribbons
We investigate the combined influence of structural defects and uniaxial longitudinal strain on the electronic transport properties of armchair graphene nanoribbons using the numerical approach based on the semiempirical tight-binding model, the Landauer formalism, and the recursion method for Green functions. We calculate the conductance of graphene nanoribbons in the quantum coherent regime w...
متن کاملThe band calculation and local state analysis for armchair graphene-like nanoribbons with line defects
In this paper we propose an analytical method to calculate the band structures of graphene-like nanoribbons of the armchair type with arbitrary line defects or uniaxial strains. The model is based on the tight-binding model and the standing wave assumption for the armchair nanoribbons. It gives accurate band results for large supercell systems. Within this method, we analyze different local sta...
متن کامل